equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////


A dinâmica dos quarks e glúons é controlada pela lagrangiana da cromodinâmica quântica. A lagrangiana invariante de gauge da QCD é



equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

onde  são os campos dos quarkos, uma função dinâmica do espaço tempo, na representação fundamental dogrupo de gauge SU(3), indexada por  são os campos de glúons, também funções dinâmicas do espaço-tempo, na representação adjunta do grupo de gauge SU(3), indexado por ab,... ; γμ são as matrizes de Dirac conectando a representação spinorial a representação vetorial do grupo de Lorentz.

O símbolo  representa o tensor de força do campo de glúon invariante de gauge, análogo ao tensor de força do campo eletromagnético, F^{\mu \nu} \,, em eletrodinâmica quântica. É dado por:[8]

onde fabc são as constantes de estrutura de SU(3). Note que as regras para mover os índices ab, or c de cima para baixo são triviais (assinatura (+, ..., +)) de forma que fabc = fabc = fabc ao passo que para os índices μ or ν devem ser seguidas as regras não triviais, correspondendo a assinatura métrica (+ − − −), por exemplo.

As constantes m e controlam a massa dos quarks e as constantes de acoplamento da teoria, sujeitas a renormalização da teoria quântica completa.

Uma noção teórica importante envolvendo o termo final da lagrangiana acima é a variável do loop de WilsonEsse loop tem papel importante nas formas discretizadas da QCD (veja QCD na rede), e de forma mais geral, distingue entre estados confinados e livres da teoria de gauge. Foi introduzido pelo físico laureado com Nobel Kenneth G. Wilson.





Em teorias de campos na redecampos de férmions experimentam (pelo menos) uma duplicação no número de tipos de partículas, correspondendo a pólos extras no propagador.

Uma rede é um arranjo periódico de vértices. Se nós aplicarmos uma transformada de Fourier a uma rede, o espaço de momentos é um toro com a forma do domínio fundamental da rede recíproca chamado de zona de Brillouin.

Isto significa que se observarmos as soluções de ondas sobre uma rede, o autovalor do operador de férmions em função do momento (vetor de onda) será periódico.

Para um campo bosônico livre, a ação é quadrática e, por isso, os autovalores tem a forma


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////
,

ou a forma similar onde . Para escalas de momento muito maiores que o espaçamento inverso de rede (i.e. para autovalores próximos de zero) somente os momentos em torno de k=0 são dominantes e nós temos uma única espécie de bóson.

Férmions, por outro lado, são descritos por equações de primeira ordem. Então, poderíamos ter algo que será como


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

pelo menos com uma dimensão espacial, sendo os casos dimensionalmente mais altos são análogos. Se nós observarmos o limite inferior dos autovalores, nós veremos duas regiões diferentes; uma sobre k=0 e a outra sobre k=π/L. Eles comportam-se como dois tipos de partículas. Isto é chamado duplicação de férmion e cada espécie de férmion é chamada um gosto (em analogia ao sabor dos quarks).





Em física de partículas, o número bariônico, ou número bariónico, é um número quântico invariante ou nulo. Pode ser definido como um terço do número de quarks menos o número de antiquarks dentro do sistema:


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

onde

 é o número de quarks, e
 é o número de antiquarks.




Em físicateoria de gauge na rede é o estudo de teorias de gauge em um espaço-tempo discreto numa rede.[1] Embora a maioria das teorias de gauge não sejam exatamente solúveis, são de grande utilidade pois podem ser estudadas por simulações computacionais. Espera-se que, executando simulações em rede progressivamente maiores, o comportamento da teoria correspondente no contínuo seja recuperado.

Nas teorias de gauge na rede o espaço-tempo passa por uma rotação de Wick, resultando em um espaço euclidiano, descrito por uma rede hiperretangular com espaçamento igual a  entre seus sítios. Os campos de quarks são somente definidos nos sítios da rede. Há problemas com a duplicação de férmion, apesar de tudo. Ver ação de Wilson-Ginsparg. Em vez de um vetor potencial, como no caso contínuo, os campos de gauge são definidas sobre as ligações do retículo e correpondem ao transporte paralelo ao longo da borda que assume valores no grupo de Lie em questão. Daí para simular a cromodinâmica quântica (QCD), para que o grupo de Lie é SU(3), existe uma matriz especial unitária 3 por 3 definida em cada ligação. As faces do retículo são chamadas plaquetas. A ação de Yang-Mills é reescrita usando laços de Wilson sobre plaquetas (isto é simplesmente um "caráter" valorado sobre a composição de variáveis de ligação em torno da plaqueta) de tal forma que o limite  formalmente dá a ação de contínuo original.

Mais precisamente, nós temos um retículo com vérticesgrafos e faces. Em teoria de retículo, a terminologia alternativa sítios, ligações e plaquetas para vértices, grafos e faces é frequentemente usada. Isto reflete a origem do campo em física do estado sólido. Enquanto que cada grafo não tem orientação intrínseca, para definir as variáveis gauge, nós atribuimos um elemento de um grupo de Lie compacto G a cada grafo uma orientação para ele chamada U. Basicamente, a atribuição para um grafo em uma dada orientação é o grupo inverso da atribuição do mesmo grafo na orientação oposta. Igualmente, as plaquetas não têm orientação intrínseca, mas lhe são dadas temporariamente uma orientação para propósitos computacionais. Dada uma representação irredutível fiel ρ de G, o retículo ação de Yang-Mills é


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

(a soma sobre todos os sítios do retículo do (componente real do) laço de Wilson). Aqui, χ é o "caráter" (traço) e o componente real é redundante se ρ passa a ser uma representação real ou pseudoreal. e1, ..., en são os n grafos do laço de Wilson em sequência. O lado positivo sobre ser real é que se a orientação de um laço de Wilson é trocada, sua contribuição para a ação permanece inalterada.

Há muitas ações de Yang-Mills possíveis sobre o retículo, dependendo sobre qual laço de Wilson for usado a fórmula acima. A mais simples é a ação de Wilson, na qual o laço de Wilson é apenas uma plaqueta. Uma desvantagem da ação de Wilson é que a diferença entre ela e a ação contínua é proporcional ao espaçamento do retículo . É possível usar laços de Wilson mais complexos onde esta diferença é proporcional a , tornando as computações mais precisas. Estas são conhecidas como "ações melhoradas".

Para calcular uma grandeza (tal como a massa de uma partícula) em teoria de retículo gauge, ela deve ser calculada para cada valor possível do campo gauge sobre cada ligação, e então calculada sua média. Na prática isto é impossível. Em vez disso o método de Monte Carlo é usado para estimar a grandeza. Configurações aleatórias (valores de campos gauge) são geradas com probabilidades proporcionais a , onde  é a ação de retículo para que a configuração e  seja relacionada ao espaçamento do retículo . A grandeza é calculada para cada configuração. O verdadeiro valor da grandeza é então encontrado por tomar-se a média do valor de um grande número de configurações. Para encontrar o valor da grandeza na teoria contínua isto é repetido para vários valores de  e extrapolados a .

Teoria do retículo gauge é uma ferramenta importante para cromodinâmica quântica (QCD). A versão discreta da QCD é chamada retículo QCD. O confinamento QCD tem sido apresentado em simulações de Monte Carlo. Confinamento a alta temperatura conduz à formação de um plasma de quarks-glúons.





renormalização é um conjunto de técnicas utilizadas para eliminar os infinitos que aparecem em alguns cálculos em Teoria Quântica de Campos.[1] Na mecânica estatística dos campos[2] e na teoria de estruturas geométricas auto-similares,[3] a renormalização é usada para lidar com os infinitos que surgem nas quantidades calculadas, alterando valores dessas quantidades para compensar os efeitos das suas auto-interações. Inicialmente vista como um procedimento suspeito e provisório por alguns de seus criadores, a renormalização foi posteriormente considerada uma ferramenta importante e auto-consistente em vários campos da física e da matemática. A renormalização é distinta da outra técnica para controlar os infinitos, regularização, que assume a existência de uma nova física desconhecida em novas escalas.[4]

Renormalização em EDQ

Em Lagrangeano de EDQ,


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

Os campos e a constante de acoplamento são realmente quantidades "cruas", por isso, o índice B acima. Convencionalmente, as quantidades cruas são escritas de modo que os termos lagrangianos correspondentes sejam múltiplos dos renormalizados:


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

Teoria de gauge e Identidade de Ward-Takahashi[5][6] implicam que podemos renormalizar os dois termos da parte derivada covariante  juntos[7], que é o que aconteceu para Z2, é o mesmo com Z1.[8]






Numa teoria quântica de campos, a regularização de divergências e a renormalização são geralmente vistas apenas como técnicas para tornar funções de correlações finitas. Contudo, elas possuem um significado físico muito profundo e mais importante: a descrição de teorias quânticas de campos mudam conforme a escala de energia. Essa ideia foi introduzida por Kenneth Wilson[1] e é quantificada pelas equações do grupo de renormalização.

Grupo de renormalização no espaço de momentos

Suponha uma teoria quântica de campos com campos  e constantes de acoplamento  descrita pela ação clássica . Vamos considerar a expansão em modos de Fourier de 


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

Usualmente, a integral é sobre todas as frequências . Neste caso, várias funções de correlação podem não ser bem definidas. Uma forma de regularizar a teoria é introduzir uma frequência de corte ultravioleta . Isto é, limitamos a integral ao disco


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

Chamaremos esse campos de  e diremos que ele é o campo na escala . Então


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

Também chamaremos a constante de acoplamento de . A função partição sobre os campos  é


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

Já que alguns dos modos de Fourier estão faltando, o campo  é praticamente constante em distâncias menores que . Então, introduzir uma frequência de corte ultravioleta é o mesmo que introduzir um corte em pequenas distâncias. É óbvio que a introdução desse limite quebra a simetria de Poincaré. Eventualmente, vamos tomar o limite do contínuo , onde a simetria de Poincaré é recuperada. A questão de renormalizabilidade é se podemos fazer isso mantendo as quantidades físicas numa escala de energia finita  regulares.[2]

Vamos decompor a região de integração da expansão em modos em duas partes:


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////
 e 

Chamaremos as expansões em modos correspondentes por


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

onde B e A referem-se a Baixas e Altas energias. Nós gostaríamos de estudar o comportamento da teoria em energias menores que , por exemplo, amplitudes de espalhamento de partículas com momentos . O que procuramos então é uma ação que descreva esses efeitos somente em termos de . Ela pode ser obtida integrando sobre  na integral de trajetória, mantendo  variável


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

Isso é chamado teoria de campos efetiva na energia . Por vezes, quando tomamos o limite para o contínuo , a expressão para a ação fica divergente e isso é a indicação que precisamos mudar a descrição da teoria em baixas energias. Nos casos mais drásticos, precisamos encontrar um novo conjunto completamente novo de campos e simetrias para descrever a teoria. Contudo, em muitos casos, a mudança de variáveis e parâmetros têm a forma:


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////




equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

Aqui,  e  são os novos campos, em termos dos quais a ação efetiva


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

é regular no limite para o contínuo. Os campos  e as contantes  na escala de corte  são chamados de campos nus e constantes de acoplamentos nuas, enquanto  e  são ditas renormalizados.

Equação de Callan-Symanzik

Se pode olhar para essa mudança de campos e constantes de duas formas. Uma forma de ver é fixar  e variar . Nós fixamos os campos  e constantes de acoplamento  numa escala  (com os valores medidos nessa escala) e mudamos os campos nus  e as contantes nuas . Se pudermos mover  para o infinito sem mudar o comportamento do sistema na energia  (descrito por  e ), então, nesse limite, obtemos uma teoria quântica de campos com simetria de Poincaré.

Uma outra forma de ver é mover , fixando  e consequentemente  e . Desta forma, o campo renormalizado e a constante de acoplamento renormalizada é que mudam com a escala. Essa constante é dita constante de acoplamento corredora. Em particular, se mudamos a escala de  para , as constantes de acoplamento mudarão de 

Essa equação é chamada de equação de Callan-Symanzik[3] e o campo vetorial  é chamado função beta da constante de acoplamento .


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////  para , onde  é a inversa da função definida anteriormente. Com efeito, definindo um campo com contribuições dos modos de Fourier entre , podemos repetir o raciocínio e escrever 


equação Graceli estatística  tensorial quântica de campos 


1 /   G    / 


 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



//////

 . Desta forma, uma mudança de escala induz uma mudança das contantes de acoplamento através do campo vetorial

Comentários

Postagens mais visitadas deste blog